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1. Introduction
1.1 Background and motivation

Dispersion curves are an invaluable part of the long-range 
ultrasonic inspection technique; they are an essential tool for 
understanding and describing the variation of the wave velocity of 
a particular mode with frequency. A long-range ultrasonic pulse can 
exhibit dispersive behaviour. From Fourier theory a pulse contains 
different components of frequency and, for a dispersive wave, each 
component will travel at a different velocity. As the pulse travels 
it will therefore appear to elongate, or disperse. The maximum 
overall amplitude of the pulse will also be diminished.

Long-range ultrasonic dispersion curves show either the phase 
or group velocity of an ultrasonic pulse for a given wave mode 
or modes and how dispersive each wave mode is at a particular 
frequency. The dispersion curves for components with regular 
cross-sections such as pipes, plates or rods are calculated by 
solving analytical equations. As far as is known, there are no 
available dispersion curve solutions for components of irregular 
cross-section, such as rails. The dispersion curve is used to choose a 
wave mode that is non-dispersive at the required frequency and also 
to choose a frequency at which the chosen, non-dispersive wave 
mode is isolated as much as possible from other similar wave mode 
excitations. This means that ultrasound received at a particular time 
can be associated with having a source at a particular position.

An innovative method developed at TWI uses a finite element 
analysis technique to calculate dispersion curves. The new method 
can be applied to prismatic structures of any cross-section, whereas 
the analytical method can only be applied to easily defined cross-
sections, such as a pipe, which has axisymmetry. This work 
creates the potential for developing long-range ultrasonic inspection 
techniques for structures of any cross-section and any material. 
Long-range ultrasonic inspection systems are only commercially 
proven on pipes. This work is an essential element of the ongoing 
development of the Teletest®(3) system for pipe inspection and 
potentially, by using this new technique, a long-range ultrasonic 
rail inspection system could also be developed.

1.2 Wave modes and nomenclature

Guided ultrasonic waves can be excited in almost any structure. 
The more complicated the structure, though, the more complicated 
are the ways in which that structure will vibrate.

The main vibrations possible in a plate are called the anti-
symmetric (a), symmetric (s) and shear horizontal (sh) wave modes. 
The symmetric and anti-symmetric wave modes in a plate are 
analogous to the longitudinal wave modes in a pipe and the shear 
horizontal wave modes are analogous to the torsional wave modes 
in a pipe. There are also flexural wave modes in a pipe.

Within these three basic types of vibration there are several 
ways in which a pipe can vibrate internally but still have the same 
overall displacement characteristic. For example, the arrangement 
of transducers in the Teletest® system is such that the longitudinal 
wave mode is preferentially excited. In the frequency range in 
which Teletest® operates, there are two instances of this wave, 
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L(0,1) and L(0,2). The L stands for longitudinal. The first number 
in the brackets relates to the number of cycles of variation around 
the circumference of the pipe. As the longitudinal wave mode is 
axisymmetric it has no variation around the circumference, and this 
value is zero. The second number is the wave mode number. More 
complex displacements through the thickness have higher wave 
mode numbers(4).

1.3 Dispersion curve characteristics

The dispersion curve shows the phase or group velocity of an 
ultrasonic pulse plotted against the central frequency of the pulse. 
The slope of the dispersion curve determines how dispersive a 
particular wave mode can be. Dispersion results in the pulse 
becoming elongated, making interpretation of the data received 
difficult. Dispersion is generally an undesirable characteristic in 
current long-range ultrasonic inspection techniques.

1.4 Group velocity and phase velocity

The effect of velocity varying with frequency is that the different 
frequency components within a pulse travel at different velocities. 
The pulse changes shape and the amplitude diminishes as dispersion 
occurs. There are two ways of defining the velocity of an ultrasonic 
pulse. The phase velocity is defined as the velocity of points with 
constant phase angle. The group velocity is defined as the velocity 
of points with constant amplitude; it is the apparent speed with 
which the pulse travels through the material. Group velocity and 
phase velocity are equal for a non-dispersive wave so the pulse 
never changes shape. Reflections measured by the receiver probe 
can be used to calculate the position of the reflector using the 
information about the time of arrival of the reflected pulse and the 
group velocity of the wave.

Group velocity is relevant when a discrete group of waves, or 
pulse is travelling. From Fourier theory a group of waves can be 
expressed as a sum of sine and cosine functions with different 
frequencies. Therefore, within the group of waves, different 
frequencies are present and, if the gradient of the phase velocity 
dispersion curve is not zero, these different frequencies will have 
different phase velocities. Some components of the group of waves 
will move faster through the wave packet than others and hence 
dispersion will occur.

2. Finite element technique
Most commercial finite element software packages are able to 
predict natural frequencies. TWI uses ABAQUS(5) as a finite 
element solver. Natural frequency analyses can be used to find 
solutions for standing waves in a structure and their frequency of 
vibration. The mode shape of a standing wave in a prismatic section 
can be used to determine wavelength of that mode, see Figure 1. 
An algorithm has been written to analyse the displacement data and 
output the wavelength. The phase velocity of the wave can then be 
found via the simple relationship:  

                                               v = f · λ ..........................................[1]

Where: v  =  velocity
 f  =  frequency of the wave mode
 λ  =  wavelength of the wave mode

The velocity found from this is the phase velocity of the wave 
mode and can be plotted against the frequency. Each data point 
obtained from the finite element natural frequency analysis is a 
point on the phase velocity dispersion curve. A typical analysis will 
find hundreds of phase velocity dispersion curve points.

Standing waves have planes of zero axial displacement (or nodes 
in natural frequency modes). The model is therefore constrained 
at each end in the axial direction. No other constraints are needed. 
This constraint allows whole and half numbers of wavelengths to 
be found within the length of the model.

For example, a model of length L=200 mm will find 
wavelengths of 2L, 2L/2, 2L/3, 2L/4, 2L/5, 2L/6, 2L/7, 2L/8, 2L/9,
2L/10, …ie 400 mm, 200 mm, 133.3 mm, 100 mm, 80 mm, 
66.6 mm, 57.14 mm, 50 mm, 44.4 mm, 40 mm …This can 
potentially continue indefinitely but will be limited by the size of 
the elements in the model.

In some cases one model cannot capture the whole range of 
interest of the dispersion curves. Hence several models must be run. 
There is a trade-off between the length of model required in order 
to capture low frequencies and the number of elements required in 
order to capture high frequencies. In some cases efficiency can be 
improved by running several models of different lengths to obtain 
sufficient points over a wide range of frequency.

Each calculated wave mode is a point on the phase velocity 
dispersion curve via Equation [1]. In the case of a simple geometry 
such as a rod or pipe, there are only a few dispersion curve lines 
and, if many points are calculated, the dispersion curves can clearly 
be made out. However, in the case of more complicated geometries 
(such as rails) the number of possible wave modes for a given 
frequency increases substantially. It therefore becomes harder to 
clearly see the separate dispersion curves. TWI has developed 
algorithms to assist the identification of each curve when the 
points alone are not sufficient. The algorithms use displacement 
information from the model to separate out the dispersion curves 
from one particular wave mode, (such as a wave mode in a rail with 
only the head vibrating) from other wave modes (such as only the 
foot of the rail vibrating).

The finite element method for calculation of phase velocity 
dispersion curves allows interrogation of the model so that the 
displacement and stress distributions of each wave mode found can 
be examined.

3. Validation of the finite element technique
Initially, the finite element dispersion curve method was validated 
against analytical equations. The software package, Disperse(6) 
solves currently available analytical equations to obtain dispersion 
curves for rods, plates and pipes. A 3D model of a 40 mm-diameter 
steel rod was created and points calculated by the nite element 
method were found to agree closely with the lines calculated 
by Disperse, see Figure 2. A selection of displaced shapes 
obtained from the analyses is shown in Figures 3-5. The nite 
element dispersion curve method was also applied to a pipe 
using an axisymmetric model (in this case the model will nd 
only the longitudinal modes). The results agree with experimental 
observations, in that if the predicted velocities are used, the 
reectors are positioned correctly. The results were also validated 
against analytical equations and the points were found to agree, see 
Figure 6.

Figure 1. Standing wave diagram. The nodes stay in fixed 
positions, the string vibrates between the two extremes of the 
solid and dashed lines
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The numerical dispersion curve method was also applied to 
a 20 mm by 25 mm rectangular steel bar. The phase velocity 
dispersion curve for the bar obtained using the finite element 
analysis technique is shown in Figure 7. In the frequency range 
examined, there were four possible modes of vibration found. 
There were two flexural modes, with parallel dispersion curves. 
This is because the bar is not square in cross-section and therefore 
has different bending characteristics in the horizontal and vertical 
directions. If the vertical and horizontal flexural dispersion curves 
are normalised by multiplying the frequency by the thickness in the 
dominant direction of oscillation, they coincide. The other possible 
modes of vibration in the frequency range examined were the 
longitudinal and torsional wave modes.

The experimental set-up is shown in Figure 8. Two probes were 
attached to the bar, one to transmit an ultrasonic pulse, the other 
to receive the information. The input pulse was a 55 kHz five-
cycle modulated wave. This was applied in a horizontal direction 
to the bar. This direction of excitation would result in preferential 
excitation of the horizontal flexural and torsional wave modes.

Figure 2. Dispersion curve comparison between Disperse 
(continuous lines) and FE results (points) for a 40 mm-diameter 
steel rod. L - longitudinal, F - flexural and T - torsional waves

Figure 5. Example of flexural standing wave, F(2,1) in 
40 mm-diameter steel rod 

Figure 4. Example of torsional standing wave, T(0,1) in 
40 mm-diameter steel rod 

Figure 3. Example of longitudinal standing wave, L(0,1) in 
section of 40 mm-diameter steel rod

Figure 6. Comparison of dispersion curves of longitudinal 
modes in a 3" schedule 40 steel pipe calculated by FE method 
(points) and Disperse (continuous lines)

Figure 8. Experimental set up. A cross-section of the bar is 
shown (not to scale)

Figure 7. Finite element calculated dispersion curve for 20 mm 
by 25 mm steel bar
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A plot showing the model predictions for arrival of the torsional 
and horizontal flexural wave modes and the trace obtained from 
the experiment are shown in Figure 9. The first pulse to arrive is 
the torsional and horizontal wave modes travelling together. The 
second pulse is the reflection of the two excited wave modes from 
the back end of the bar. The arrival times of all pulses and hence the 
predicted group velocities from the finite element group velocity 
dispersion curve predictions agree closely with the experimental 
results.

4. Dispersion curve for a rail
There is a real need for long-range ultrasonic testing of rails and 
the analytical approach is not practically applied to the complicated 
rail geometry. Through providing a dispersion curve for a rail, the 
finite element technique opens up the possibility of developing a 
long-range ultrasonic inspection system for rails.

Using the finite element technique, a phase velocity dispersion 
curve for a steel rail was calculated. An example of the mesh used is 
shown in Figure 10. A selection of displaced shapes obtained from 
the analysis are shown in Figures 11-14. There were fewer points 
in the low frequency range so each of the displaced shapes could 
be examined in order to determine which mode they belonged to. 
It is also helpful to know that it is impossible to find two separate 
displaced shapes with the same number of wavelengths in the 
model, belonging to the same mode. The phase velocity dispersion 
curves calculated are shown in Figure 15. The more easily tracked, 
low frequency dispersion curves are indicated by continuous lines. 
In the frequency range of 20-50 kHz the number of wave modes 
increases dramatically. This makes it harder to track the dispersion 
curve lines, however lines can just be seen to be sweeping in 
steeply and levelling off.

Figure 9. Comparison of experiment with finite element results 
(dashed vertical lines are predicted arrival times of horizontal 
flexural wave mode and continuous vertical lines are predicted 
arrival times of torsional wave mode)

Figure 10. Example mesh of rail used to calculate dispersion 
curve

Figure 11. Example wave mode in a rail

Figure 12. Example wave mode in a rail. The excitation is 
predominately in the head of the rail

Figure 13. Example wave mode in a rail. The excitation is 
predominately in the foot of the rail

Figure 14. Example wave mode in a rail. The excitation is 
predominately in the mid-section of the rail
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5. Discussion
Since some modes have been found to only travel in the head of 
the rail, they could be more easily isolated. The excitation would be 
applied purely to the head of the rail. These wave modes could also 
be particularly useful for isolating flaw detection to the head of the 
rail. However, interaction of ultrasonic pulses with flaws can result 
in mode conversion. Mode conversion would be undesirable if a 
large number of modes are excited, as a result of hitting the flaw, 
so that the resulting signal can not be interpreted. However, certain 
mode conversions could be useful in detecting the flaw. 

In the long-range ultrasonic inspection of pipes, mode conversion 
is often relied upon to determine that a flaw exists, rather than 
a legitimate feature of the component. The foot of the rail is 
clamped to the sleepers; this constraint may therefore suppress 
mode conversion from modes travelling purely in the head of the 
rail to other modes which have an element of vibration in the 
foot of the rail. It is possible that some entire body modes of 
vibration in rails could suffer from less mode conversion than other 
modes; these modes could prove to be useful for finding flaws 
anywhere in the rail. TWI is currently carrying out finite element 
wave propagation analyses to study the reflection and transmission 
of modes from flaws. These will help to identify the modes suitable 
for clear detection of flaws.

The ability to detect a flaw is improved by having shorter 
wavelengths in relation to the flaw size. Since wavelength decreases 
with increasing frequency, this would indicate that better flaw 
detection would be achieved using higher frequencies. However, 
the points on the dispersion curve for the steel rail demonstrate that 
at frequencies greater than about 20 kHz (λ~50 cm) there are a large 
number of possible modes of vibration. Generally speaking, the 
greater the number of modes present, the more difficult it becomes 
to interpret received signals. Consequently, although ideally, as 

high a frequency as possible should be used to detect the smallest 
possible flaws, in practice a frequency must be used such that flaws 
of the target size may be detected reliably.

Factors governing the minimum size of flaw which can be 
detected using guided waves are complex and beyond the scope of 
this paper. To address this issue, interaction of modes with flaws 
will be the subject of further modeling work, so at this stage it is not 
possible to give guidance about the minimum size of flaw which 
might be detectable.

6. Conclusions
The results from the dispersion curve calculation technique have 
been validated against analytical solutions for a steel rod and a steel 
pipe. The dispersion curve calculation technique has been validated 
with an experiment by comparing predicted arrival times from the 
group velocity dispersion curve with actual arrival times recorded 
by a receiving probe in the experiment.
n A method has been developed using finite element analysis to 

calculate dispersion curves of any prismatic cross section
n The finite element method for calculating dispersion curves has 

been validated against analytical solutions and confirmed by 
experimental observations.

n Experimentally measured group velocities in a rectangular steel 
bar have been accurately predicted using a dispersion curve 
generated by the new method.

n A significant amount of information has been generated relating 
to the dispersion curves for a steel rail. Wave modes have been 
identified which are isolated to the head, foot or mid-section of 
the rail. These modes may potentially be used to detect flaws in 
the relevant parts of the rail.
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Figure 15. Dispersion curves for a rail


